POZNAN UNIVERSITY OF TECHNOLOGY

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS)

pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

COURSE DESCRIPTION CARD - SYLLABUS

Course name

Operations research and optimization theory

Course

Field of study Year/Semester

Logistics 1/2

Area of study (specialization) Profile of study

Corporate Logistics general academic Level of study Course offered in

Second-cycle studies Polish

Form of study Requirements part-time compulsory

Number of hours

Lecture Laboratory classes Other (e.g. online)

14

Tutorials Projects/seminars

14

Number of credit points

3

Lecturers

Responsible for the course/lecturer: Responsible for the course/lecturer:

Ph.D., Tomasz Brzęczek, Ph.D., D.Sc., Eng. Jacek Żak, University Professor

Phone: 61 665 33 92 Phone: 61 665 22 30

Mail to: tomasz.brzeczek@put.poznan.pl Mail to: jacek.zak@put.poznan.pl

Faculty of Engineering Management, Faculty of Engineering Management,

ul. J.Rychlewskiego 2, 60-965 Poznań ul. Piotrowo 3, 60-965 Poznań

POZNAN UNIVERSITY OF TECHNOLOGY

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS)

pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

Prerequisites

algebra rules, basics of probability theory and statistics, operaiting skills in Excel and its formulas

Course objective

Learning to plan and make quantitative and other decisions using methods of constrained optimization.

Course-related learning outcomes

Knowledge

- 1. Student knows typical problems of logistics that can be solved using operation research [P7S WG 05].
- 2. Knows graphical method and simplex for linear programming [P7S_WG_04].
- 3. Knows chosen optimization methods for and transportation, multicriteria problems, graphs and networks solving [P7S_WK_01].
- 4. Knows statistics used to assess decisions and risk, knows rules used under uncertainty [P7S WK 01]
- 5. Knows examples of concave or network programming [P7S_WG_04].

Skills

- 1. Student can solve optimization tasks using Excel Solver add-in [P7S_UO_01].
- 2. Understands idea of graphical method and simplex algorithm [P7S_UW_04].
- 3. Can identify multi criteria decision tasks and problems that are solved with graph theory [P7S_UO_01].
- 4. Can optimize decision under risk and limit the level of risk [P7S UU 01].

Social competences

Is able to explain benefits of optimization in practice [P7S_KR_02].

Methods for verifying learning outcomes and assessment criteria

Learning outcomes presented above are verified as follows:

Partial assessment:

- a) at lecture the modelling and classifing study of optimization case is assessed,
- b) at tutorial there is intrasemester assessment of tasks and theory.

Final grade:

- a) of lecture results from final test including tasks and problem questions of whole course.
- b) of tutorial a group of 2 students use Solver to find out the optimum solution of a case different than the chosen one for partial assessment a) .

POZNAN UNIVERSITY OF TECHNOLOGY

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS)

pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

Programme content

- 1. Introduction: decision variable, objective, constraint, feasible solution, the optimum, linear programme (LP). Task formulation: product-mix (assortment), blending problem, transportation and transshipment, multiperiod scheduling, using of Excel add-in Solver
- 2. linear programming methods: simplex, graphical method, sensitivity analysis,
- 3. balanced and unbalanced transportation problems, feasible solution finding, optimization using alphas and betas potentials,
- 4. multigoal task, multigoal efficiency, metacriterion, hierarchy, goal programming (GP), optimization degree, point multicriteria method versus AHP for suppliers assessment
- 5. uncertainty and risk: rules, news boy, decision tree, optimum stock quantity models (EOQ and others)
- 6. chosen tasks from: CPM, PERT, Gantt, time-cost analysis, minimum spanning tree, the shortest way, maximum flow, non-linear revenue, salesman problem, assignment problems.

Teaching methods

lecture focused at problem, tutorial in solving tasks, case study

Bibliography

Basic

- 1. Anholcer M., Gaspars H., Owczarkowski A., Ekonometria z Excelem, Wyd. UEP, Poznań 2010.
- 2. Brzęczek T., Gaspars-Wieloch H., Godziszewski B., Podstawy badań operacyjnych i ekonometrii, Wyd. PP, Poznań 2010.
- 3. Przykłady i zadania z badań operacyjnych i ekonometrii, Sikora W. (red.), Wyd. UEP, MD, Poznań 2005.

Additional

- 1. Józefowska J., Badania operacyjne i teoria optymalizacji, Wydawnictwo PP, Poznań 2011.
- 2. Sikora W. (red.), Badania operacyjne, PWE, Warszawa 2008.
- 3. Trzaskalik T. (red.), Wprowadzenie do badań operacyjnych z komputerem CD, PWE, Warszawa 2008.

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS)

pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

Breakdown of average student's workload

	Hours	ECTS
Total workload	75	3,0
Classes requiring direct contact with the teacher	40	1,5
Student's own work (literature studies, preparation for tutorials,	35	1,5
preparation for tests) ¹		

4

¹ delete or add other activities as appropriate